DUBLIN, IRELAND: Research and Markets has announced the addition of the "Third-Gen Thin-Film Solar Technologies: Forecasting the Future of Dye-Sensitized and Organic PV" report to its offering.
Third-generation thin-film solar devices are beginning to emerge in the marketplace after approximately 20 years of research and development, due to the insight of leading material developers such as Konarka and Plextronics in the organic photovoltaics (OPV) domain, and Dyesol, EPFL, G24i, Mitsubishi and Peccell on the dye-sensitized cells (DSC) front.
Both DSC and OPV technologies lag far behind on the efficiency curve when compared to conventional solar (i.e., greater than 20 percent efficiency), so they will likely succeed in markets where their low cost, substrate flexibility, and ability to perform in dim or variable lighting conditions provide them with a significant competitive advantage. DSC will target larger area BIPV applications while OPV will find its application in lower power consumer applications.
The success of penetrating existing and new PV markets will depend on many variables, including: (1) costs in $/Wp, as well as $/m2 of product and power availability (kWh/Wp/annum); (2) the technical and environmental profile of each newly introduced technology; (3) added value for the consumer and architects; and (4) ease of production and the scale at which a production plant becomes economically feasible.
At this stage, third-generation PV is not at a price point to be able to compete directly with silicon-based cells or the more exotic thin-film technologies, but it will nevertheless play a significant energy role in applications and markets that conventional solar materials will never be able to penetrate. These include low-power consumer electronics, outdoor recreational applications, and BIPV applications.
One of the greatest appeals of third-generation thin-film solar cells is that they can be manufactured using solution-based, low-temperature roll-to-roll manufacturing methods, incorporating conventional printing techniques on flexible substrates, which presents the opportunity for a more economical alternative for solar cells within the next few years.
Such new low-cost third-generation solar cells will offer larger surface areas with enhanced performance. However, to enable long-term use of DSC and OPV in conventional electricity generation, e.g., in grid-connected or stand-alone rooftop applications, significant progress in cell efficiency, stability, and lifetime are needed.
With respect to lifetime, there is much discussion going on as to whether the technologies need to have the same lifetime as silicon-based PV (20+ years) for economical rooftop use, or whether shorter lifetimes of around five years, especially for very low-cost modules, could be deemed acceptable (this is, in fact, the direction that Konarka and SKYShades are taking).
However, there is some evidence to suggest that for mass production for top grid-connected and building-integrated solar cells, optimal lifetime duration should be at least 20 years, since investors are less likely to support a technology with low efficiency and lifetime.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.